

P.T.O.

(a) Differentiate gap grading and continuous grading of coarse aggregate. Explain in brief the importance of grading of fine aggregate for making good quality concrete. [6]

Q:

- (b) State the classification of admixtures as per IS 9103 and explain in brief the role of superpalsticizers in concrete. [6]
- 3. (a) What is meant by maturity concept of concrete ? Find the strength of identical concrete at the age of 15 days when cured at an average temperature during day time at 42°C, and night time at 25°C if strength of fully matured concrete tested in laboratory is found to be 30 MPa (i.e. at the age of 28 days of curing). Take Plowman's Coefficients for Maturity Equation as A = 21 and B = 61. [6]

(b) Write a short note on Creep and shrinkage of concrete. [6]

- 4. (a) Explain the relation between tensile and compressive strength with graph. For the design of concrete road which strength is considered and why?
 - (b) Write short notes on :

[6]

- (i) Ultrasonic concrete Tester
- (*ii*) Self-compacting concrete.

[5668]-108

Or

- Using Indian Standard recommended guidelines, design a concrete 5. mix for a reinforced concrete structure to be subjected to the mild exposure conditions for the following requirements : [13]
 - Stipulations for proportioning (A)

(ii)

- Grade designation : M25, (i)
 - (iii) Type of cement : OPC 53 grade conforming to IS 8112
 - Workability: 100 mm (slump) (iv)

Standard deviation, s = 4

- Degree of supervision : Good
- Exposure condition Moderate (vi)
- Type of aggregate Angular coarse 20 mm aggregate, (vii)
- rai (*viii*) Minimum and maximum cement content = 300 kg/m^3 and 450 kg/m³ respectively
- Test data for materials (B)
 - Specific gravity of cement : 3.15 (i)
 - Specific gravity of : (ii)
 - Coarse aggregate 2.84 (a)
 - Fine aggregates 2.59 *(b)*
 - Water absorption : (iii)
 - Coarse aggregates (a)
 - Fine aggregates -*(b)*

[5668]-108

P.T.O.

- (iv) Free surface moisture :
 - (a) Coarse aggregates Nil (absorbed moisture also nil)
 - (b) Fine aggregates Nil
 - (v) Sieve analysis
 - (a) Coarse aggregate :

IS Sieve	Analysis	of Coarse	Perc	entage of	f different	Remarks
Sizes (mm)	Sizes (mm) Aggregate Fraction			Fractions		
	<u>, , , , , , , , , , , , , , , , , , , </u>	II	Ι	II	Combined	
2At	D **		(60%)	(40%)	(100%)	
20	100	100	60	40	100	Confirming
10	0	71.2	0	28.5	28.5	of Table 2
4.75		12.60		5.04	5.04	of IS 383
2.36		0			0	

(b) Fine aggregate : Conforming to grading zone HD

(C) Design considerations :

 Table 1 : From IS 10262 : Maximum water content per cubic

 meter of concrete

Sr. No.	Nominal Maximum Size	Maximum Water
	of Aggregate (mm)	Content (kg)
Ι	10	208
II	20	186
III	40	165

[5668]-108

Table 2 : From IS 10262; Volume of Coarse Aggregate per Unit Volume of Total Aggregate

Sr. No.	Nominal Maximum Size of Aggregate (mm)	Volume of Coarse Aggregate per Unit Volume of Total Aggregate for Different Zones of Fine			
	C	Aggregate			
		Zone IV	Zone III	Zone II	Zone I
Ι	10	0.50	0.48	0.46	0.44
II Ø.	20	0.66	0.64	0.62	0.60
III	40	0.75	0.73	0.71	0.69

Table 3 : From IS 456, Different Exposure conditions for reinforced concrete

Sr. No.	Exposure	Minimum cement	Maximum free	Minimum grade
		content (Kg/m ³)	water cement	of concrete
	\sim		ratio	500
Ι	Mild	300	0.55	M20
П	Moderate	300	0.50	M25
III	Severe	320	0.45	M30
IV	Very Severe	340	0.45	M35
V	Extreme	360	0.40	M40
[5668]-10	8	5	.A.S	Р.Т.О.

- Or 6. (a) What are various factors affecting concrete mix design ? Explain in brief selection of Water Cement ratio in DOE method. [6]
 - (b) Find out the standard deviation and coefficient of variation used in the design of concrete mixes from the following data of concrete cubes tested for compressive strength after 28 days : [7]

