Total No. of	Questions—8]	[Total No. of Printed Page	es— 5
Seat No.		[5252]-8	509
S.E. (Civil) (Second Semester) EXAMINATION, 2017			
STRUCTURAL ANALYSIS-I			
(2015 Pattern)			
Time : Two	Hours	Maximum Marks	: 50
N.B. : (<i>i</i>)	Answer Q. 1 or Q. 2,	Q. 3 or Q. 4, Q. 5, or G	Q. 6,
	Q. 7 or Q. 8.	C.N.	
(<i>ii</i>)	Neat diagrams must be	drawn wherever necessary.	
(<i>iii</i>)	Figures to the right ind	icate full marks.	
<i>(iv)</i>	Assume suitable data, if	necessary.	
(v)	Use of electronic pocket	calculator is allowed.	
		2 A A A A A A A A A A A A A A A A A A A	
1. (<i>a</i>)	Write note on Degree	of freedom, Determinacy	and
	Indeterminacy.		[6]
			\sim
(b)	Find slope and deflection a	at points 'B' and 'C' for canti	lever
	beam by moment area r	nethod.	[6]
		10kN/m	
	A (21)		
	3m	2m	
5			
		A.	
		^O , [,] F	Р.Т.О.

2. (a) Determine static and kinematic indeterminacy of the following beams. : [6]

(b) Determine deflection at 'C' by Castigliano's first theorem. [6]

3. (a) A cantilever truss shown below is loaded by a vertical force of 10 kN at free end. Find the total deflection at the free end in terms of AE which is constant. [6]

(b) A uniformly distributed load of 10 kN/m intensity, 4 m in length crosses a girder of span 30 m from right to left. With the help of influence lines, determine the values of shear force and bending moment at a point of 10m from left end when the head of the load is 12 m from the left support. [6]

4. (a) Determine total deflection of joint 'C'. A = 100 mm², E = 200 GPa. [6]

(b) For the cantilever beam shown below, calculate reactions at fixed end by influence line diagram method. Also draw influence line diagrams.

[5252]-509

P.T.O.

- 5. A three hinged parabolic arch is loaded and supported as shown in figure below. Determine [13]
 - (a) Support reactions
 - (b) Maximum positive and negative bending moment.

6. Determine horizontal thrust for a two hinged parabolic arch of span 'L' and central rise 'H' carries a point load 'W' at a distance 'a' from left hand support. Assume $I = I_0 \sec \theta$. [13]

7. (a) Explain :

- (i) Plastic Moment
- (ii) Plastic Collapse
- (iii) Elastic-Plastic behavior of beam
- (b) For the cross-section of the beam shown below find the shape factor. [7]

[5252]-509

[6]

For the cross-section shown below, find the shape factor. 8. (a)

[7]t D Write note on Shape factor and Plastic section modulus. (b)[6]

[5252]-509