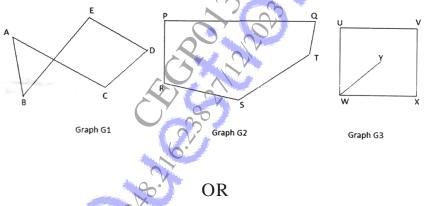
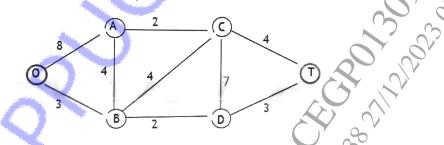

Total No. of Questions P9115			SEAT No. :	o. of Pages : 5
· -	6179 ngineering/ Comp al Intelligence & D DISCRETE M	uter Science Pata Science	Engineering	
(2	019 Pattern) (Sei			6.
Time : 2½ Hours] Instructions to the can	didatese		[M	ax. Marks : 70
1) Answer Que	stion No. Q1 or Q2, at	nd Q3 or Q4, a	nd Q5 or <mark>Q6 an</mark>	d Q7 or Q8.
2) Neat diagra	must be drawn whe	never necessa	ry.	
3) Figures to the	ne right indicate full i	narks.	, C	
4) Assume suit	able data, if necessar	y.	O	
Start with	bit strings of length '1' or end with '00'?	9		[6]
b) In how ma	any ways can 6 Boys	and 2 Girls b	e seating in a ro	ow such that
i) 2 Gir	ls are seating togethe	r		
ii) 2 Gir	ls are not seating tog	ether.		[6]
c) How many	y bit strings can be fo	rmed of lengtl	n 10 bits which	contains?[6] 🚓
i) at lea	ast four 1's?) R		
Q2) a) How man	y bit strings of leng	th 10 can be	formed which	will contain
_	onsecutive 0s or 5 cor			[6]
b) A zip code with the di	e contains 6 digits. He	ow many diffe	erent zip codes	
ii) The f	First digit is not '0'	CY	20	[6]
c) Use the Bi	nomial theorem to ex	xpand (3a-2b)	6	[6]
		V *		

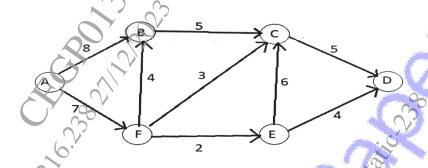



b) Explain with example:

[5]

- i) Bipartite Graph
- ii) Connected Graphs
- c) What is Graph isomorphism? Which of the following graphs are asomorphic? Justify your answer. [5]

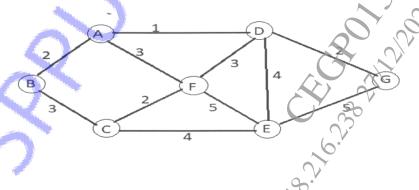
Q4) a) Find shortest path from vertex 'O' to Vertex 'T' using Dijkstra's algorithm.[7]



b) Explain with suitable example:

[5]

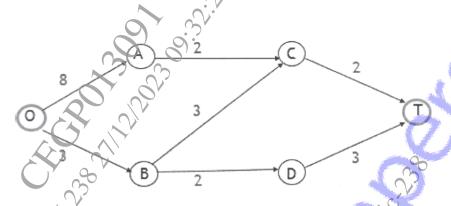
- i) Euler path & Euler circuit
- ii) Hamilton path & Hamilton circuit


- c) What is planar Graph? A simple planar graph G contains 20 vertices and degree of each vertex is 3. Determine the number of regions in planar graph G? [5]
- Q5) a) For the following graph find different cut set and identify the max flow in given network? [6]

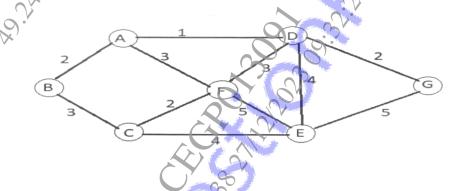
b) Find the optimal prefix code for the given characters with the frequency of occurrences as below. [6]

Character	Frequency	
A	10 63	
E	15	
Ι	12	9
O	0,003	33
U	6.74	
S	13	
T	1	

c) Find minimum Spanning tree using prims algorithm [6]


OR

Q6) a) Construct Binary search Tree:


[6]

21, 28, 14,18,11, 32, 25, 23, 37, 27, 5, 15, 19, 30, 12, 26

b) For the following transport network find the maximum flow using max flow min cut theorem. [6]

c) Find minimum spanning tree using Kruskals Algorithm. [6]

Q7) a) Let $Z_4 = \{0,1,2,3\}$ and 'R' be the relation under operation '+' defined as a+b=a+b: if (a+b)<4 a+b=a+b-4: if $(a+b)\leq 4$

Where $a,b \in \mathbb{Z}_4$

Determine Algebraic System $(Z_4,+)$ is abellian group or not? [6]

- b) Explain: [6]
 - i) Integral domain
 - ii) Field
- c) Let $A=\{0,1,2,3\}$ and 'R' be the relation under operation ' \odot ' defined as a \odot b=a,b%4. Determine algebraic system (A, \odot) is monoid or not? [5]

OR

Q8) a) Let $Zn = \{0,1,2,3,...n-1\}$

Consider 'R' relation under operation '+' defined as "addition Modulo 5" and operation '*' defined as "multiplication modulo 5". Does the Algebraic system. $(Z_5,+,*)$ forms Ring"? [8]

- b) Explain the following properties of Algebraic structure with example [4]
 - i) Identity
 - ii) Inverse
- c) Consider 'R' be the relation under binary operation '*' on a set Z. Does the algebraic system (Z,*) is Abelian Group? [5]

S. As. 16.28 All Days of the State of the St